Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets.
نویسندگان
چکیده
The p53-family member TAp73 is a transcription factor that plays a key role in many biological processes. Here, we show that p73 drives the expression of microRNA (miR)-34a, but not miR-34b and -c, by acting on specific binding sites on the miR-34a promoter. Expression of miR-34a is modulated in parallel with that of TAp73 during in vitro differentiation of neuroblastoma cells and cortical neurons. Retinoid-driven neuroblastoma differentiation is inhibited by knockdown of either p73 or miR-34a. Transcript expression of miR-34a is significantly reduced in vivo both in the cortex and hippocampus of p73(-/-) mice; miR-34a and TAp73 expression also increase during postnatal development of the brain and cerebellum when synaptogenesis occurs. Accordingly, overexpression or silencing of miR-34a inversely modulates expression of synaptic targets, including synaptotagmin-1 and syntaxin-1A. Notably, the axis TAp73/miR-34a/synaptotagmin-1 is conserved in brains from Alzheimer's patients. These data reinforce a role for TAp73 in neuronal development.
منابع مشابه
Regulation of Neuronal Cell Cycle and Apoptosis by MicroRNA 34a.
The cell cycle of neurons remains suppressed to maintain the state of differentiation and aberrant cell cycle reentry results in loss of neurons, which is a feature in neurodegenerative disorders like Alzheimer's disease (AD). Present studies revealed that the expression of microRNA 34a (miR-34a) needs to be optimal in neurons, as an aberrant increase or decrease in its expression causes apopto...
متن کاملmicroRNA-34a regulates neurite outgrowth, spinal morphology, and function.
The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is re...
متن کاملThe downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy
Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter gene...
متن کاملMiR-34a Represses Numbl in Murine Neural Progenitor Cells and Antagonizes Neuronal Differentiation
MicroRNA (miRNA) function is required for normal animal development, in particular in differentiation pathways from stem cell and precursor populations. In neurogenesis, it is becoming increasingly appreciated that miRNAs act at many stages to ensure proper progression. In this study we examined the role of miR-34a in neural progenitor cells (NPC) derived from murine embryonic cortex. We found ...
متن کاملMicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation.
MicroRNAs (miRNAs, miRs) modulate a multitude of cellular events. Here, we identify functional miRNA-protein networks that regulate human monocyte-derived dendritic cell (MDDC) differentiation. miRNA profiling revealed stage-specific differential expression of 20 miRNAs during days 1, 3, and 5 of MDDC differentiation. To identify and prioritize miRNA-protein networks for functional validation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 52 شماره
صفحات -
تاریخ انتشار 2011